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Summs: 
--- 

Four 2,6-dideoxyhexoses; D-(+)-digitoxose, D-(+)-cymarose, D-(+)- 
olivose, and D-(-)-oleandrose have been synthesized stereo- and enantio- 
selectively starting with (+)-(2R,3S)-1,2-epoxypent-4-en-3-o1 prepared by asym- 
metric epoxidation of divinylcarbinol. 

In recent years the synthesis of deoxysugars has attracted great attention 

because of their broad existence as a sugar component in various antibiotics as 

well as their characteristic 2,3,4-trio1 systems which present in a number of 

polyhydroxylated natural pr0ducts.l We have recently reported 2,3 that the 

titanium-tartrate mediated asymmetric epoxidation4 of prochiral divinylcarbinol 

(1) having a u-symmetrical nature proceeded with high diastereoselectivity 

(erythro/threo=97/3) and enantioselectivity (>90% ee)5 to produce either 

(2R,3S)-1,2-epoxypent-4-en-3-o1 (&) or it's enantiomer 2b, depending on the 

chirality of the tartrate used. We now wish to describe a novel enantio- and 

stereo-selective synthesis of four 2,6-dideoxyhexoses; D-(+)-digitoxose 

(3), 
lb,6,7 

D-(+)-cymarose (s), lb D-(+)-olivose (S), 
lb,8 

and D-(-)-oleandrose 

(6)9'10 - using (2R,3S)-1,2-epoxypent-4-en-3-01 (2a) as a - 
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(2R,3S)-1,2-Epoxypent-4-en-3-o1 (a), prepared from divinylcarbinol (1) as 

mentioned above, was subjected to reduction (LiA1H4, THF,-20°C) followed by 

benzylation 'I (PhCH2Br, NaH, 10 mol % "Bu4NI, THF, 25'C) in the same flask to 

give the benzyl ether 1, 
l2 bpO 25 

12O'C (Kugelrohr), [alA +37.4O (c 1.129, . 
CHCl3), in 87% yield. In order to achieve stereoselective introduction of the 

requisite hydroxyl group either with ribo-configuration or with arabino-configu- 

ration, the following routes were examined. Thus, hydroxylation 
13 

of 1 (1 mol % 
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-04 I N-methylmorpholine N-oxide monohydrate, 50% aq. acetone, 25°C) afforded an 

inseparable epimeric mixture of the diol S in 90% yield. The diol was then 

converted into the epoxide 10, bpo 45 170°C, by tosylation (p-TsCl, pyridine, 

25°C) followed by treatment with potassium carbonate (MeOH, 25'C) in 79% overall 

yield. Reaction of 10 with vinylmagnesium bromide in the presence of copper(I) - 

iodide (THF, -78'C) yielded the ribo-alcohol 11, I4 ta1;g -43.2' (c 1.024, 

CHCl,), and the arabino-alcohol 12, 
"_ 

-24.0' (c 0.716, CHC13), in a ratio 

of 9T:916 in 93% yield." 
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On the other hand, addition of allyltrimethylsilane to the aldehyde 13, 

prepared by oxidative cleavage of the diol 8 (Pb(OAc)$, THF, -3O"C), in the 

presence of titanium tetrachloride (CH2C12, -90°C) according to the Reetz's 

procedure 

of 5:>951i8 

afforded the ribo-alcohol 11 and the arabino-alcohol 12 in a ratio - - 

in 80% overall yield from S. It is interesting to add that upon this 

addition reaction at -78°C instead of -9O'C, concomitant regioselective cleavage 
17 

of the benzyl group took place to give the diol l4, mp 53°C ("hexane), [al, 

-22.3' (c 1.057, CHC13), in 29% yield together with 46% yield of 12. These 

results reveal that the chelated transition state A predominated over the other 

possible chelated structure 12 in this titanium mediated addition of allyltri- 

methylsilane to 13. - Moreover, this addition reaction was also examined using 

tin tetrachloride or boron trifluoride etherate in place of titanium tetra- 

chloride. The results are summarized in the Table which shows that boron tri- 

fluoride etherate mediated addition resulted in the opposite diastereofacial 

selection reflecting the nonchelated transition state C as postulated by 

Reetz. 
18 

Having developed the stereoselective routes to the ribo-alcohol 11 and the - 

arabino-alcohol 12, conversion of 11 and 12 into 2,6-dideoxyhexoses was then - - 

investigated. Thus, _ the ribo-alcohol 11 was subjected to debenzylation (Li, - 

liq. NH3-THF, -33°C) followed by ozonolysis (03, MeOH, -2O"C, then Me2S, 25°C) 

to furnish D-(+)-digitoxose (3_), mp 104-106°C (AcOEt) (lit.lb 102-103'(Z), [clg4 

+46.0° (c 1.807, H20, equilibrated) (lit.lb +48.8'), in 74% overall yield. 

Furthermore, 11 was converted into D-(+)-cymarose (A), 

(lit.lb 84-85<), [cl:' 

mp %4-85“C (Et20/"hexane) 

+51.2O (c 2.112, H20, equilibrated) (lit." +54.9O) ,a 

the methyl ether I& [albg -3.8" (c 1.197, CHC13), in 77% overall yield by three 
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steps (i. methylation (MeI, NaH, THF, 25'C), ii. debenzylation (Li, liq. NH3- 

THF, -33"C), iii. ozonolysis (03, MeOH, -2O"C, then Me2S, 25'C)). Similarly, 

the arabino-alcohol12 was transformed into D-(+)-olivose (I), [cr]i2 +15.7O (c 

1.590, H20, equilibrated) (lit. 

[a]:' -11.8' (c 1.150, H20, e~,"i;:~~~t)~d) 

(70% yield) and D-(-)-oleandrose (g), 

(lit.yb +11.9' for it's antipode), 

(60% yield) via the methyl ether 16, [a]:' -18.5" (c 1.017, CHC13). Each of 

these synthetic 2,6-dideoxyhexoses exhibited spectral properties ('H-NMR and 
13 

C-NMR in D20) in accord with those reported. 
lb,10 

.raH- M&HO + MB* + ~~~ 

H dBn H bBn H bBnH 
H i H 

OR 

a _ 13 - (arabino)z; R=Bn 

14: R=H 

i 

BnO 
.*.BF 3 

I C _ 
product ratio 16 

Lewis acid temp, OC yield from S, % 11/12 -- 

TiC14 -90 80 5/95 

SnC14 -90 63 19/81 

BF3 Et20 -90 39 88112 

BF3 Et20 -78 52 aa/12 

11; R1=OH, R*=H M o H 

12; R1=H, R2=OH -> - 

15; R1=OMe, R2=H TV" 

3; R1=OH, R2=H 

4; Rl=OMe, R2=H 

HO" 5_; R1=H, R*=OH - 

16. _' Rl=H, R2=OMe R2 
'..Rl 

6; R1=H, R2=OMe 
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